Archivo de la categoría: FÍSICA

Cierran el círculo en torno al comportamiento cuántico de los fotones

Un experimento podría demostrar que las rarezas de estas partículas no son una excepción ni tampoco fruto de fallos en los instrumentos de medida

Un equipo de investigadores vieneses ha cerrado más el círculo en torno al comportamiento cuántico, contrario a la intuición, de partículas cuánticas como los fotones. En general, existe la duda de si las partículas cuánticas se comportan siempre de manera “extraña” o, simplemente, sus comportamientos reflejan carencias de los instrumentos de medida. Mediante una experimentación profunda del entrelazamiento cuántico de los fotones, los científicos consiguieron detectarlos a todos, aunque haciendo varios experimentos. Ahora solo falta el experimento definitivo, el que de una sola vez los detecte a todos… comportándose de manera cuántica.


Laboratorio IQOQI. Imagen: Jacqueline Godany. Fuente:

Laboratorio IQOQI. Imagen: Jacqueline Godany. Fuente:
Un equipo de la Universidad de Viena (Austria), dirigido por el físico austriaco Anton Zeilinger, ha llevado a cabo un experimento con fotones, con el que han cerrado una laguna importante.

Los investigadores han conseguido con él la prueba experimental más completa de que el mundo cuántico está en conflicto con nuestra experiencia cotidiana. Los resultados de este estudio se publican esta semana en la revista Nature.

Cuando se observa un objeto, se hacen una serie de suposiciones intuitivas, entre ellas que las propiedades únicas del objeto han sido determinadas antes de la observación y que estas propiedades son independientes del estado de otros objetos, distantes. En la vida cotidiana, estas suposiciones están plenamente justificadas, pero las cosas son diferentes a nivel cuántico.

En los últimos 30 años, varios experimentos han demostrado que el comportamiento de las partículas cuánticas -tales como átomos, electrones o fotones- puede estar en conflicto con nuestra intuición básica. Sin embargo, estos experimentos nunca han conseguido respuestas definitivas.

Hasta ahora, todos los experimentos han dejado abierta la posibilidad, al menos en principio, de que las partículas observadas “aprovecharan” una debilidad del sistema experimental.

La física cuántica es una herramienta exquisitamente precisa para comprender el mundo que nos rodea a un nivel muy fundamental. Al mismo tiempo, es una base para la tecnología moderna: semiconductores (y por lo tanto, ordenadores), láseres, escáneres de resonancia magnética, y otros numerosos dispositivos se basan en efectos físicos cuánticos.

Sin embargo, incluso después de más de un siglo de intensa investigación, los aspectos fundamentales de la teoría cuántica no son del todo claros. De manera regular, laboratorios de todo el mundo han obtenido resultados que parecen en contradicción con nuestra intuición cotidiana, pero que se pueden explicar en el marco de la teoría cuántica.

El entrelazamiento cuántico

Los resultados de los físicos de Viena no reflejan un efecto nuevo, sino una profunda investigación en uno de los fenómenos más fundamentales de la física cuántica, conocido como “entrelazamiento” (entanglement). El efecto del entrelazamiento cuántico es increíble: al medir un objeto cuántico que tiene una pareja “entrelazada”, el estado de la partícula 1 depende de las mediciones realizadas en su pareja.

La teoría cuántica describe el enredo como independiente de cualquier separación física entre las partículas. Es decir, el entrelazamiento también puede ser observado cuando las dos partículas están lo suficientemente separadas la una de la otra de modo que no pueden intercambiar información entre ellas (la velocidad de comunicación está fundamentalmente limitada por la velocidad de la luz). Probar tales predicciones con respecto a las correlaciones entre las partículas cuánticas entrelazadas es, sin embargo, un reto experimental importante.

Hacia una respuesta definitiva

Los jóvenes universitarios del grupo de Anton Zeilinger, entre ellos Marissa Giustina, Alexandra Mech, Rupert Ursin, Sven Ramelow y Bernhard Wittmann, en una colaboración internacional con el Instituto Nacional de Estándares y Tecnología/NIST (EE.UU.), el Physikalisch-Technische Bundesanstalt (Alemania), y el Instituto de Óptica Cuántica Max Planck (Alemania), han dado un importante paso hacia la obtención de pruebas definitivas experimentales de que las partículas cuánticas sí pueden hacer cosas que la física clásica no permite que ellos hagan.

Para su experimento, el equipo construyó una de las mejores fuentes de pares de fotones entrelazados en todo el mundo y empleó detectores de fotones de alta eficiencia diseñados por expertos del NIST.

Estos avances tecnológicos junto con un protocolo de medición adecuado permitieron a los investigadores detectar fotones entrelazados con una eficiencia sin precedentes. En pocas palabras: “Nuestros fotones ya no pueden escabullirse de ser medidos”, afirma Zeilinger en la nota de prensa de la Universidad de Viena.

Un último paso

Aunque el nuevo experimento hace que los fotones sean las primeras partículas cuánticas para las cuales, en varios experimentos separados, se han cerrado todas las escapatorias posibles, aún falta el broche de oro, es decir, un experimento individual en el que se les cierren dichas escapatorias.

Tal experimento también sería de importancia fundamental para una aplicación práctica importante: la ‘criptografía cuántica’, que se basa en principios mecánicos cuánticos y se considera que es totalmente segura contra las escuchas. El espionaje es aún, sin embargo, teóricamente posible, dado que sigue habiendo lagunas. Sólo cuando todas estos están cerradas será posible un intercambio completamente seguro de mensajes.

Un experimento sin lagunas, dice Zeilinger, “es un gran reto, que atrae a grupos de todo el mundo.” Estos experimentos no se limitan a los fotones, sino que también incluyen a los átomos, electrones, y otros sistemas que muestran un comportamiento mecánico cuántico. El experimento de los físicos austriacos destaca el potencial de los fotones.

Gracias a estos últimos avances, el fotón se está quedando sin lugares donde esconderse, y los físicos cuánticos están más cerca que nunca de la prueba experimental concluyente de que la física cuántica desafía nuestra intuición y la experiencia cotidiana en la medida sugerida por la investigación de las últimas décadas.

¿la materia oscura es evidencia de un nivel más profundo de la realidad?

Erik Verlinde propone una explicación del universo que podría plantar una alternativa a las constantes gravitacionales de Newton, además de poner en duda la estabilidad del continuo espacio temporal.

dark

Una de las tendencias de la física teórica es la búsqueda del siempre esquivo campo unificado, una explicación de la naturaleza del universo que sea congruente, continua y accesible a la experiencia empírica. La “unificación”, en nuestros días, consiste en tratar de compatibilizar la teoría del campo cuántico on la teoría general de la relatividad de Einstein, las cuales, dentro de sus basamentos sólidos, siguen siendo mutuamente incompatibles. Para encontrar el “campo común” de nuestras explicaciones del universo sería necesario dejar de pensar de la misma manera nociones tan cotidianas como el continuo espacio temporal. Eso es justamente lo que propone el teórico de supercuerdas Erik Verlinde.

Durante un taller de investigación en el Kavli Institute for Theoretical Physics se discutió ampliamente un trabajo de Verlinde que, aunque simple, quiebra las cabezas de los teóricos más avezados. “Sobre el origen de la gravedad y las Leyes de Newton” (que puede consultarse aquí en inglés). Decimos que es simple porque su premisa es muy básica, pero sus consecuencias replantean por entero nuestro entendimiento del universo. Creemos que la ley de gravedad formulada por Newton es una constante universal si se asume la existencia del espacio también como una constante. Pero para Verlinde, la gravedad es una fuerza entrópica contingente provocada por cambios en la información asociada a la posición de los cuerpos en dicho espacio. Más impresionante: una relativización general de tales argumentos es compatible con las ecuaciones de Einstein. Dicho de otro modo: si el espacio es emergente incluso la ley de inercia de Newton requiere replantearse.

verlinde

Los asistentes al taller de Kavli se inclinan a pensar que el tiempo y el espacio no son, pues, las condiciones básicas del universo, sino situaciones o fenómenos emergentes, la punta apenas visible de un enorme iceberg cuántico. Los argumentos a favor recaen en la existencia de los hoyos negros. La gravedad en ellos funciona de versiones distintas a la termodinámica clásica. De ser así, los hoyos negros representarían una nueva fase de la materia. Fuera de ellos, los “grados de libertad” del universo (las posibilidades contenidas en la construcción del universo) estarían en un estado de baja energía, un arreglo provisional que experimentamos como el continuo espacio temporal. Sin embargo, al interior del hoyo negro, las condiciones son tan extremas que dicha estabilidad se quiebra.

Según Verlinde, dentro de los hoyos negros “puedes derretir el continuo espacio temporal. Es ahí realmente donde el continuo espacio temporal termina. Para entender lo que ocurre necesitas utilizar estos grados de libertad subyacentes.” Aquí es donde se pone interesante: estos “grados de libertad” no pueden ser pensados como “existentes” en un lugar, pues trascienden lo que entendemos por “espacio”. Su lugar es una realidad abstracta de pura posibilidad o “fase espacio”, con un repertorio de comportamientos inimaginablemente rico. Resumiendo: la gravedad para Verlinde no es una fuerza de la naturaleza como se pensaba desde Newton, sino una fuerza entrópica producto de dinámicas de menor escala.

Para Verlinde, las explicaciones actuales sobre las “anomalías” de los campos gravitatorios no son satisfactorias: la materia oscura parece un flogisto esquivo, una explicación contingente sobre algo para lo que aún no tenemos las herramientas teóricas de análisis. La alternativa para los fenómenos que hasta ahora se explican mediante la presunción de existencia de la materia oscura se conoce como MOND (Dinámica Newtoniana Modificada), la cual no es solamente una reinterpretación de las leyes de la física, sino la evidencia de un estrato subyacente. Mediante las fórmulas de MOND se puede explicar el comportamiento de la materia oscura de manera sencilla, la cual obedecería un patrón que los investigadores aún están resolviendo.

En el modelo del universo de Verlinde, toda la materia (tanto la “normal” como la materia oscura) consiste en vibraciones de los grados de libertad subyacente, por lo cual la materia, en cierto modo, se crea y se destruye todo el tiempo. Tales grados de libertad también explican la energía oscura, unificando los componentes del universo. Lo que diferencia tales componentes es su velocidad de respuesta: la materia común es lo más superficial, la materia oscura está “debajo”, en una “frecuencia” menor pero muy poderosa, y la energía oscura en un estado de lenta estabilidad.

Aunque, como Verlinde cree, la materia oscura y la energía oscura no sean evidencia de una realidad “subyacente”, su teoría nos alienta a preguntarnos si las herramientas teóricas con las que pensamos actualmente el universo son las más correctas o, por el contrario, ni siquiera las bases estables de la realidad (el espacio y el tiempo) son básicas ni mucho menos estables.

[Scientific American]

http://pijamasurf.com/2013/03/la-materia-oscura-es-evidencia-de-un-nivel-mas-profundo-de-la-realidad/

El LHC sí puede crear agujeros negros JOSÉ MANUEL NIEVES

Una colaboración de lalunagatuna

Durante años, los físicos han debatido esta posibilidad, especialmente desde que surgieron las primeras dudas sobre la posible (e involuntaria) creación de agujeros negros en el Gran Colisionador de Hadrones

Dos investigadores de la Universidad de Princeton reviven la posibilidad de que las colisiones de partículas en el LHC (Gran Colisionador de Hadrones) puedan generar agujeros negros al calcular que la cantidad de energía necesaria para que esto suceda es 2,4 veces menor de lo que se creía hasta ahora.

La colisión de dos partículas a gran velocidad puede concentrar en un punto concreto la suficiente energía como para formar un agujero negro

En teoría, la colisión de dos partículas que viajan a gran velocidad puede concentrar en un punto concreto la suficiente energía como para formar un agujero negro. Durante años, los físicos han debatido esta posibilidad, especialmente desde que surgieron las primeras dudas sobre la posible (e involuntaria) creación de agujeros negros en los experimentos del Gran Colisionador de Hadrones (LHC).

Ahora, William E. East y Frans Pretorius, del Departamento de Física de la Universidad de Princeton, han demostrado que la cantidad de energía de colisión necesaria para que dos partículas subatómicas formen un agujero negro es 2,4 veces menor de lo que se creía hasta ahora. El trabajo se acaba de publicar en Physical Review Letters.

Como lentes gravitacionales

Los autores explican que los objetos en colisión pueden actuar como lentes gravitacionales el uno con respecto del otro, concentrando la energía de la colisión en dos regiones independientes capaces de confinar la luz. Regiones que, eventualmente, pueden llegar a unirse para formar un agujero negro.

En 2008, se habló del riesgo de que el LHC pudiera formar un agujero negro que engulliera la Tierra

En 2008, empezaron a difundirse una serie de preocupantes informaciones sobre el riesgo de que las colisiones de protones en el LHC, que se producen al 99% de la velocidad de la luz, pudieran formar un agujero negro que terminara engullendo la Tierra. En términos técnicos, la energía del colisionador es, de lejos, demasiado baja como para permitir que esto suceda, pero según ciertos modelos sí que sería posible que de esas colisiones surjan una serie de agujeros negros microscópicos, aunque incapaces de causar daño al planeta.

En todo caso, varios años de colisiones en el LHC (sin consecuencias nefastas para la Humanidad), han despejado los temores y reducido al mínimo la controversia. Sin embargo, la posibilidad de que estos experimentos puedan generar agujeros negros ha seguido considerándose seriamente en el ámbito de la física teórica.

Simulaciones informáticas

Varios estudios anteriores habían calculado la cantidad de energía cinética necesaria en una colisión para que se forme un agujero negro, pero nadie había prestado atención a la dinámica interna que especifica dónde exactamente terminan los restos de las colisiones.

Los dos puntos se fusionan formando un agujero negro con el 72% de la energía total de la colisión

Ahora, William E. East y Fran Pretorius, de la Universidad de Princeton, han llevado a cabo una serie de simulaciones informáticas de la colisión frontal entre dos gotas de fluido que representan a partículas genéricas. Y esas simulaciones mostraron que la propia gravedad de las gotas hace que la energía converja, y quede atrapada, en dos “puntos focales” que se encuentran en los dos extremos opuestos del centro de la colisión.

Después, y en determinadas condiciones, los dos puntos se fusionan formando un agujero negro que contiene el 72% de la energía total de la colisión. La mayor parte de la energía restante es radiada en forma de ondas gravitacionales. El efecto de lente gravitatoria, además, reduce el umbral de energía necesaria para que el agujero negro se forme, algo que habrá que tener muy en cuenta en las futuras búsquedas de agujeros negros en los experimentos del LHC.

https://selenitaconsciente.com

¿Cómo se mide el calor?

Como-se-mide-el-calor-2.jpg

El calor y la temperatura son fenómenos sumamente interesantes. Se manifiestan de innumerables maneras y en muchas oportunidades, la cuestión va más allá del clima, por lo cual medir el calor no siempre resulta sencillo. Te invito a sumergirnos en el vasto campo de las ciencias físicas para aprender un poco más sobre la temperatura y a conocer cómo se mide el calor.

El calor

Como-se-mide-el-calor-1.jpg

En términos abstractos, podemos definir el calor como la transferencia de energía de un cuerpo a otro, o dentro del mismo cuerpo, que se encuentran a una temperatura diferente. Este traspaso de energía pasa del cuerpo con mayor temperatura al cuerpo con menor, hasta que se alcanza un equilibrio térmico entre ambos.

Entonces, en pocas palabras, lo que en realidad llamamos calor es el flujo de energía caliente o calorífica que se transmite de un cuerpo o un objeto caliente (de altas temperaturas) a un cuerpo u objeto frío (de temperaturas más bajas). La forma en la que este flujo de energía se puede medir es utilizando lo que se conoce como Calorías.

Una caloría es la medida de la cantidad de calor que existe en una sustancia. Esto es básicamente la cantidad de energía que se requiere para elevar un gramo de agua por un grado Celsius, y la fórmula que se puede utilizar para calcular éste es el cambio de temperatura en Celsius dividido la masa de agua que se calentó con eso.

¿Cómo se mide el calor?

Como-se-mide-el-calor.jpg

Para lograr cálculos perfectos, la medición del calor se realiza a través del calorímetro, un instrumento que hace posible medir las cantidades de calor absorbidas o liberadas por los cuerpos. Obviamente, cuando pensamos en términos de medición del calor tendemos a pensar en un termómetro, pero esta es una concepción errónea.

Mientras el calorímetro puede medir el calor específico y absoluto de un cuerpo, eltermómetro no hace más que medir la temperatura, que responde a las nociones de los seres humanos sobre lo que es caliente y lo que es frío. El termómetro no permite medir transferencias decalor y por ende, no mide el calor en términos absolutos.

Igualmente, los termómetros son útiles porque, en general, deseamos medir el calor de acuerdo a nuestra concepción del mismo. Además, trabajan en diferentes escalas. Las escalas más conocidas por todos nosotros son las siguientes:

  • Grado Celsius (ºC)
  • Grado Fahrenheit (ºF)
  • Grado Réaumur (ºRé)

http://www.ojocientifico.com/2010/10/17/%C2%BFcomo-se-mide-el-calor

El aleteo de una mariposa sigue provocando tornados

La teoría del caos extiende su aplicación desde la meteorología hasta la criptografía. Se cumplen 50 años de la formulación científica del llamado “efecto mariposa

En marzo de 1963, el matemático y meteorólogo estadounidense Edward Lorenz dejó bien claro porqué los hombres del tiempo se equivocan tanto. Bajo el anodino título de Flujo determinista no-periódico, publicó un artículo que, 50 años después, es uno de los más citados de la historia científica. Contenía la moderna formulación de la teoría del caos, según la cual los sistemas dinámicos como el clima son muy sensibles a las condiciones iniciales. Para hacer más digeribles sus ideas, durante una conferencia, planteó la siguiente pregunta: ¿puede el aleteo de una mariposa en Brasil producir un tornado en Texas?

Atractor de Lorenz
Esta figura ilustra el comportamiento errático de temperaturas y velocidades atmosféricas predicho en las ecuaciones matemáticas de Lorenz. /Wikimedia Commons

 

Aunque Lorenz pudo coger prestado del escritor de ciencia-ficción Ray Bradbury la metáfora delefecto mariposa, los sistemas que siguen los patrones descritos en la teoría del caos son muy reales. El no tan ordenado movimiento de los astros, el desplazamiento del plancton por los mares, el retraso de los aviones, la sincronización de las neuronas o el flamear de las banderas; todos son sistemas caóticos o, como prefierne llamarlos los físicos, “dinámicos no lineales”.

Un par de años antes de publicar su seminal artículo, Lorenz estaba trabajando en el diseño de un modelo de predicción meteorológica. En una ocasión, durante la simulación de la convección de masas de aire, olvidó anotar los últimos valores numéricos de las variables que había obtenido. Decidió reiniciar el trabajo con los datos que sí tenía, acortando una cifra. Aquellos pocos decimales de menos resultaron en un cambio radical del tiempo estimado.

“La teoría del caos destaca la importancia de las condiciones iniciales para resolver un problema”, dice Claudio Mirasso, del Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC) de la Universitat de la Universitat de les Illes Balears y el CSIC. “En la simulación del tiempo, si introduces los valores de tus variables con diferente precisión, en poco, el tiempo habrá cambiado enormemente”, añade. Esa sensibilidad a las condiciones iniciales está en la base de la teoría y del efecto mariposa.

Otra de sus características es su dificultad para predecirlos. En la época de Lorenz no existían los modernos satélites ni las complejas redes de estaciones meteorológicas que hay hoy, pero ya entonces dejó claro que no se pueden hacer buenas predicciones del tiempo a medio plazo. Lo único que ha hecho la moderna tecnología es ganar días antes de que cualquier predicción sea víctima del caos.

Pero caos no significa azar. El humo de un cigarrillo, por ejemplo, es un movimiento caótico pero no caprichoso. Si se tuvieran los datos exactos de todas las variables que intervienen, desde el viento y dirección del aire, el polvo en suspensión, la combustión…. se podría predecir por donde irá tras la siguiente calada. ”El problema es que el caos y el azar se parecen”, recuerda Mirasso. Lo que hizo Lorenz fue someter a la ciencia a una cura de humildad.

Un orden celeste desordenado

Lorenz no fue el primero que destacó el papel del caos en todo lo que nos rodea. Ya en el siglo XIX, Henri Poincaré demostró que el orden de los cuerpos celestes establecido por Isaac Newton no era tal. Las órbitas de planetas y lunas no son tan exactas. “El problema es que, en nuestra escala del tiempo, nosotros no podemos verlo”, explica Emilio Hernández-García, también del IFISC. Pero hasta Lorenz, lo de Poincaré era visto como una extravagancia de los matemáticos. Tras Lorenz, “el caos empezó a ser visto no como una rareza sino como lo normal”, añade este investigador.

Hoy, la teoría del caos se aplica al estudio de un sinfín de los llamados modelos de dinámica no lineal. En el caso de Hernández-García, por ejemplo, lo hace en oceanografía. Estudia la estructura de las masas compactas de agua del mar para calcular su movimiento. Entre las aplicaciones de sus modelos estarían el desplazamiento del plancton, con sus implicaciones en la biodiversidad marina y la pesca, o la lucha contra los vertidos de petróleo.

«El problema es que el caos y el azar se parecen»


CLAUDIO MIRASSO
investigador del Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC)

Pero hay muchas otras aplicaciones, desde lacriptografía caótica hasta la movilidad urbana, pasando por el tratamiento de enfermedades o el devenir de la bolsa. Mirasso ya demostró hace unos años las posibilidades del caos para transmitir información cifrada hace unos años en un experimento realizado en Atenas.

Pero, ¿existe aquel efecto mariposa que usó Lorenz para empezar su conferencia? La metáfora es muy sugerente y ha dado para varias películas, libros y hasta una cosmogonía sobre el papel del hombre en el mundo. Aunque para Mirasso, en la medida que indica que pequeñas variaciones, muchas veces imperceptibles, pueden tener grandes consecuencias, “no es una metáfora descabellada”, para su colega Hernández-García, es poético pero inútil ya que “no sabemos si hubo aleteo o cuántas mariposas aletearon”.

VÍDEO | La teoría del caos, explicada con un péndulo. / IFISC

http://esmateria.com/2013/03/31/el-aleteo-de-una-mariposa-sigue-provocando-tornados/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+materia%2Fnoticias+%28Materia%29

Viajar a una velocidad superior a la luz es posible… en teoría

O los que hacen las películas son profetas, o bien sus guiones, son escritos desde un presente en el que se conocen muchas cosas.

Las famosas naves de ciencia ficción de ‘Star Trek’ atravesaban el universo propulsadas por motores que distorsionaban el espacio-tiempo. Más de medio siglo después, la NASA nos anuncia que teóricamente sería posible desarrollar estos motores.

Sin embargo, la aplicación práctica del principio de distorsión del espacio-tiempo tiene que superar muchos retos. El empuje warp, o empuje de distorsión, es una forma teórica de propulsión superlumínica que permitiría a una nave espacial alcanzar una velocidad muy superior a la velocidad de la luz.

La NASA ha publicado en su sitio web un artículo con cierto tono irónico y carente de detalles titulado ‘Propulsión warp: ¿Para cuándo?’. Como se desprende del texto, en uno de los programas de la NASA varios científicos trataron de desarrollar un sistema de propulsión para naves espaciales totalmente nuevo. La base teórica de este estudio son los trabajos de físicos y matemáticos como Matt Visser, Michael Morris, Miguel Alcubierre, entre otros.

Lógicamente, de momento no se trata de aplicar en la práctica estas teorías, pero el empuje warp (propulsión por un espacio-tiempo distorsionado) ha dejado de ser por primera vez un tema de conversación exclusivo de los aficionados a la ciencia ficción.

La contracción y la expansión

La posibilidad de desarrollar un nuevo motor la describió Miguel Alcubierre: fue él quien descubrió que teóricamente se puede distorsionar el espacio de manera que este se contraiga delante del objeto y se expanda detrás de él. Por ‘objeto’ entendemos la nave espacial, aunque en las primeras etapas de investigación se tratará de partículas elementales.

Por lo tanto, una nave colocada en una ‘burbuja’ de espacio distorsionado permanecería estacionaria, mientras que una expansión violenta del espacio detrás de la nave espacial y una contracción del espacio frente a ella provocarían que la distancia entre la nave y la tierra aumentara rápidamente, mientras que la distancia entre la nave y una estrella lejana disminuiría a una velocidad superior a la de la luz.

En otras palabras, una nave capaz de distorsionar el espacio de esta manera no se desplazaría ‘por’ el espacio, sino ‘con’ el espacio.

Recordemos que según la teoría de la relatividad especial de Einstein, todavía no refutada en sus fundamentos básicos, la velocidad de la luz en el vacío no puede ser superada.

Según reconoció Harold White, director de Eagleworks, el laboratorio de la NASA que investiga las formas avanzadas de movimiento, “estamos intentando distorsionar el espacio-tiempo en aproximadamente una diezmillonésima parte”… lo que no es suficiente siquiera para mover un átomo de hidrógeno.

Estabilización

El problema más importante que afrontan los físicos que trabajan en la distorsión del espacio es estabilizar una situación extremadamente frágil: contraer y expandir el espacio no es lo todo. Hace falta también estabilizar este estado a largo plazo.
La solución teórica consiste en utilizar el efecto Casimir, llamado así por el físico holandés Hendrik Casimir, quien en la década de los 40 del siglo pasado desarrolló la teoría según la cual entre dos cuerpos cercanos en el espacio existe cierta atracción no gravitacional.

Dicho de otra forma, en el vacío existen partículas y antipartículas que crean sus propios campos. El efecto Casimir consiste en retirar del vacío las partículas, con lo que se produce el llamado ‘supervacío’, en el cual se moverá la ‘burbuja’ con la nave espacial dentro.

Masa y energía

Sin embargo, el principal desafío es crear un espacio distorsionado. De hecho, precisamente la cantidad de energía y masa requerida para crear un espacio distorsionado es lo que provoca mayor escepticismo entre los científicos.

Según los cálculos de White mencionados por la revista ‘Science Illustrated’, con el fin de crear espacio suficiente para mover una nave espacial de 200 metros de diámetro (unas dimensiones bastante reducidas), se necesita la energía que se puede obtener de la famosa fórmula de Einstein, E = mc2, en que la masa (m) es nada más y nada menos que la masa de Júpiter.

La solución se podría encontrar si existiera una nueva fuente de energía, pero hasta ahora la humanidad ni siquiera ha sido capaz de desarrollar un motor termonuclear para cohetes convencionales, mucho más simple y con un consumo de energía mucho menor.

La cuestión de la energía no asusta a White. En una entrevista el científico recordó que el primer reactor nuclear de Estados Unidos, el gigantesco Chicago-I, construido en 1942, generaba tan poca energía que no podía encender ni una bombilla convencional.

White cree que tanto en el caso del primitivo reactor nuclear como en el de la distorsión del espacio, las pruebas de la viabilidad de estos fenómenos ya son de por sí un gran progreso.

“- Entonces, ¿sería posible hacerlo? – Sí, pero no en un futuro previsible” es la respuesta que se da en el artículo de la página web de la NASA.

http://actualidad.rt.com/ciencias/view/90325-nave-empuje-warp-distorsion-espacio

Las más de 500 fases de la materia

Referencia: Perimeter.Institute.ca .

Por R.J. Taylor, 21 de diciembre 2012

Hay que dejar aparte lo sólido, líquido y gaseoso: de hecho hay más de 500 fases de la materia. En un importante artículo publicado en la ScienceXiao-Gang Wen miembro del Insituto Perimeter, revela una moderna reclasificación de todos ellas.

La física de materia condensada es una rama de la física encargada de descubrir y describir la mayor parte de estas fases, de manera tradicional se han clasificado dichas fases por la forma en que se construyen y se organizan sus bloques fundamentales, en general los átomos. La clave para ello se llama simetría.

Para entender la simetría, imaginemos el vuelo a través del agua líquida de una nave increíblemente pequeña: los átomos se arremolinan a su alrededor al azar y en todas las direcciones, ya sea arriba, abajo o hacia los lados. El término técnico para esto es «simetría», y los líquidos son altamente simétricos. El cristal de hielo, otra fase del agua, es menos simétrico. Si volamos a través del hielo de la misma manera, veríamos unas filas rectas de estructuras cristalinas pasando con tanta regularidad como las vigas de un rascacielos sin terminar. Ciertos ángulos te darían diferentes puntos de vista. Ciertos caminos estarían bloqueados, otros abiertos. El hielo tiene muchas simetrías, por ejemplo, cada «planta» y cada «habitación» tendrían el mismo aspecto, pero los físicos diríamos que la alta simetría del agua líquida está rota.

La clasificación de las fases de la materia mediante la descripción de sus simetrías, y dónde y cómo se rompen esas simetrías, se conoce como el paradigma de Landau. Más que una forma de ordenar las fases de la materia en un gráfico, la teoría de Landau es una poderosa herramienta que guía a los científicos en el descubrimiento de nuevas fases de la materia, ayudándoles a entender el comportamiento de las fases conocidas. Los físicos estaban muy cómodos con la teoría de Landau dado que durante mucho tiempo creyeron que todas las fases de la materia podían ser descritas por las simetrías. Así que fue una experiencia reveladora cuando descubrieron un puñado de fases que Landau no podía describir.

A principios de la década de 1980, los investigadores de la materia condensada, entre los que se incluía Xiao-Gang Wen, ahora miembro del Perimeter Institute, estuvieron investigando nuevos sistemas cuánticos donde podían existir numerosos estados básicos con la misma simetría. Wen señaló que esos nuevos estados contienen un nuevo tipo de orden: el orden topológico. El orden topológico es un fenómeno mecánico cuántico: no está relacionado con la simetría de un estado fundamental, sino con las propiedades globales de la función de onda del estado fundamental. Así pues, trasciende el paradigma Landau, el cual está basado en conceptos de física clásica.

El orden topológico es una comprensión más general de las fases cuánticas y las transiciones entre ellas. En este nuevo marco, las fases de la materia no se describen por los patrones de simetría de su estado fundamental, sino por los patrones de una propiedad cuántica, el entrelazamiento. Cuando dos partículas están entrelazadas, ciertas mediciones realizadas en una de ellas afectan inmediatamente a la otra, no importa lo alejadas que estén una de otra. Los patrones de estos efectos cuánticos, a diferencia de los patrones de las posiciones atómicas, no pueden ser descritos por sus simetrías. Si tuviéramos que describir una ciudad como un estado topológico ordenado desde nuestra diminuta e imposible cabina de vuelo, no podríamos describir las vigas y los edificios de cristales que pasan, sino más bien como las conexiones invisibles que hay entre ellos, sería algo así como describir una ciudad basándose en el flujo de información de su sistema telefónico.

Esta descripción más general de la materia desarrollada por Wen y sus colaboradores era muy poderosa; pero todavía había algunas fases que no encajaban. En concreto, un conjunto de fases entrelazadas de corto alcance que no rompen la simetría, las llamadas fases topológicas de simetría protegida. Ejemplos de este tipo de fases son los superconductores y los aislantes topológicos, que son de interés ampliamente generalizado, porque muestran la promesa de su uso en la próxima generación de la electrónica cuántica.

En el documento presentado en la edición de Science, Wen y sus colaboradores revelan un nuevo sistema que puede, por fin, conseguir clasificar estas fases de simetría protegida.

Usando las matemáticas modernas, específicamente la teoría de la cohomología y la teoría super-cohomológica de grupo, los investigadores han construido y clasificado las fases de simetría protegida para cualquier número de dimensiones y simetrías. Su nuevo sistema de clasificación permitirá conocer acerca de estas fases cuánticas de la materia, que a su vez pueden aumentar nuestra habilidad para diseñar estados de la materia y usarlos en los superconductores o los ordenadores cuánticos.

Este trabajo echa una mirada reveladora al intrincado y fascinante mundo de entrelazamiento cuántico, y un paso importante hacia una nueva clasificación moderna de todas las fases de la materia.

# # #

– Relacionados:
· Leer este documento en Science .
· El número actual de Nature proporciona confirmación experimental de la existencia del líquido cuántico de espín, uno de los nuevos estados de la materia predichos teóricamente por Wen y sus colaboradores.
· Ensayo de Wen sobre las relaciones entre la materia condensada física y la cosmología.
· Una introducción a la comprensión de las fases de la materia basada en la simetría.
– Acerca de XIAO-GANG WEN: Considerado como uno de los principales teóricos de la materia condensada en el mundo, Xiao-Gang Wen holds the BMO Financial Group Isaac Newton Chair at Perimeter Institute for Theoretical Physics. The BMO/Newton Chair was established by a $4 million gift from the BMO Financial Group in 2010 and, in 2011, Wen joined Perimeter from MIT as its inaugural occupant. Leer un resumen accesible de su investigación.


– Fuente: Perimeter Institute for Theoretical Physics., vía EurekAlert!.org
– Imagen 1): Xiao Gang-Wen, miembro de Perimeter Institute. Imagen 2) Impresión artística de un entretejido de luz y electrones. Las redes entretejidas son una clase teórica de materia topológicamente ordenada.

http://bitnavegante.blogspot.com.es/2012/12/las-mas-de-500-fases-de-la-materia.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+bitnavegante+(BitNavegantes)&utm_term=Google+Reader

Una nueva mirada al Universo primitivo

Más información: Physics.APS.org .

Por Parampreet Singh, 17 de diciembre 2012

Una nueva teoría cosmológica aborda la descripción de la primera época del Universo, un periodo inaccesible por los modelos estándar actuales.

La inflación cosmológica, la hipótesis de que el universo primitivo experimentó una expansión muy rápida, es un paradigma popular en la cosmología moderna. La teoría explica con éxito cómo las fluctuaciones de la mecánica cuántica del vacío, empezando aproximadamente unos 10 a 36 segundos después del big bang, pudo haber dado lugar a la estructura a gran escala del Universo, lo que lleva a unas predicciones que han sido confirmadas por una serie de observaciones cosmológicas.

Sin embargo, la cosmología inflacionaria no puede ser la teoría última del universo. Si proyectamos el Universo hacia atrás en el tiempo, se pone tan caliente y denso que las leyes de la física en las que se basa la inflación (la relatividad general clásica) se rompen. En la llamada era de Planck, que dura un Planck (10−43 s.) después del Big Bang, la fuerza de la gravedad habría alcanzado valores comparables a las otras fuerzas fundamentales. En este régimen, los efectos de la gravedad cuántica habrían sido importantes, creando unas condiciones que van más allá de la comprensión convencional del espacio y del tiempo.

¿Qué condiciones existían antes de la inflación y en qué medida afectan a las predicciones del modelo inflacionario? Tales cuestiones cosmológicas fundamentales siguen sin respuesta, ya que no tenemos aún una teoría que puede hacer frente a la física de la época de la pre-inflación y que conecte sin problemas con el período inflacionario.

El artículo publicado en Physical Review Letters, por Iván Agullo y sus colegas de la Universidad Estatal de Pennsylvania, retoma la Gravedad Cuántica de Bucles (LQG), una teoría candidata de la gravedad cuántica, y la utiliza para ampliar el escenario inflacionario hasta el final a la era de Planck. Los autores también encuentran que las características de la fase pre-inflacionaria podría ser observable en firmas cosmológicas, ofreciendo así una oportunidad para poner a prueba la gravedad cuántica y probar la física pre-inflacionaria en futuras observaciones astronómicas.


– Original: “Quantum Gravity Extension of the Inflationary Scenario”. Ivan Agullo, Abhay Ashtekar, and William Nelson. Phys. Rev. Lett. 109, 251301 (2012). Artículo en .pdf .
– Autor: Parampreet Singh, Departamento de Física y Astronomía, Universidad Estatal de Louisiana, Baton Rouge, LA 70803, EE.UU.
– Fuente: Physics 5, 142 (2012)  |  DOI: 10.1103/Physics.5.142 .
– Imagen: Esquema de la evolución del Universo según el modelo de Agullo et al., basado en la extensión de una gravedad cuántica de bucle (LQG) del paradigma inflacionario (la figura no está a escala). La LQG se utiliza para describir el Universo primitivo de la era de Planck. Los autores muestran que su teoría conecta bien con la cosmología inflacionaria convencional, y hace predicciones similares sobre el fondo cósmico de microondas observable. El modelo se basa en un “gran rebote” (big bounce) en lugar del big bang: una transición que va desde la contración a una fase de expansión del Universo. APS/Alan Stonebraker

http://bitnavegante.blogspot.com.es/2012/12/una-nueva-mirada-al-universo-primitivo.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+bitnavegante+(BitNavegantes)&utm_term=Google+Reader

Investigadores del MIT descubren un nuevo tipo de magnetismo

Referencia: MIT.news.edu .

Por David L. Chandler, 19 de diciembre 2012

Siguiendo con las predicciones teóricas anteriores, los investigadores del MIT han demostrado experimentalmente la existencia de un tipo totalmente nuevo de comportamiento magnético, que se suman a los dos estados previamente conocidos de magnetismo.

El ferromagnetismo —el magnetismo simple de una barra magnética o la aguja de una brújula—, se conoce de hace siglos. El segundo tipo de magnetismo, el antiferromagnetismo, es cuando los campos magnéticos de los iones dentro de un metal o aleación se anulan entre sí. En ambos casos, los materiales se vuelven magnéticos sólo cuando son enfriados por debajo de una cierta temperatura crítica. La predicción y el descubrimiento del antiferromagnetismo —la base de las cabezas de lectura en los discos duros de los ordenadores actuales—, le hizo ganar el Premio Nobel de Física a Louis Neel en 1970, profesor emérito del MIT de Clifford Shull en 1994.

“Estamos demostrando que hay un tercer estado fundamental del magnetismo”, dice Young Lee, profesor de física del MIT. El trabajo experimental que muestra la existencia de este nuevo estado, llamado espín líquido cuántico (QSL), se informó esta semana en la revista Nature, con Young Lee como autor senior y Tianheng Han, que obtuvo su doctorado de física en el MIT a principios de este año, como autor principal.

El QSL es un cristal sólido, pero su estado magnético se describe como líquido: A diferencia de los otros dos tipos de magnetismo, las orientaciones magnéticas de las partículas individuales dentro de él fluctúan constantemente, asemejándose al movimiento constante de las moléculas dentro de un líquido verdadero.

Descubrir la evidencia

No existe un orden estático para las orientaciones magnéticas, conocido como momentos magnéticos, dentro del material, explica Lee. “Pero existe una fuerte interacción entre ellos, y debido a los efectos cuánticos, no bloquean su lugar.”

Aunque es extremadamente difícil de medir, o probar la existencia de este estado tan exótico, añade, “este es uno de los más fuertes conjuntos de datos experimentales que hay sobre esto. Antes sólo existía en los modelos teóricos y ahora es un sistema físico real.”

Philip Anderson, un importante teórico, propuso por primera vez el concepto en 1987, diciendo que este estado podría ser relevante para los superconductores de alta temperatura, continuó Lee. “Desde entonces, los físicos han querido constatar tal estado, solamente en los últimos años hemos progresado en ello”.

El material en sí mismo es el cristal de un mineral llamado herbertsmitita. donde Lee y sus colegas primero lograron formar un cristal puro y grande de este material el año pasado, un proceso que tardó 10 meses, y desde entonces han estado estudiando sus propiedades en detalle.

“Esto ha sido el fruto de una colaboración multidisciplinaria, con físicos y químicos”, explica Lee. “Se necesita mucho para sintetizar el material y estudiarlo con técnicas de física avanzada. La aportación de los teóricos también fue crucial en esto.”

A través de sus experimentos, el equipo hizo un importante descubrimiento, como explica Lee: Encontramos un estado con excitaciones fraccionadas, las cuales ya se habían predicho por algunos teóricos, aunque era una idea muy controvertida. Cuanto más materia tengan los estados cuánticos separados más cambios se expresan como números enteros, el material QSL exhibe estados cuánticos fraccionados. De hecho, los investigadores descubrieron que estos estados excitados, llamados espinones, forman un continuo. Esta observación, se dice en el artículo de Nature, es “lo primero destacable”.

Dispersión de neutrones

Para medir este estado, el equipo utilizó una técnica llamada dispersión de neutrones, que es la especialidad de Lee. Para llevar realmente a cabo las mediciones, se utilizó un espectrómetro de neutrones del Instituto Nacional de Estándares y Tecnología (NIST) en Gaithersburg, Md.

Los resultados, señala, son “la fuerte evidencia de esta fragmentación” de los estados de espín. “Eso era una predicción teórica fundamental para los espín líquidos que estamos viendo de una manera clara y detallada por primera vez.”

Puede llevar bastante tiempo traducir esta “investigación tan fundamental” en aplicaciones prácticas, comenta Lee. El trabajo podría conducir a avances en el almacenamiento de datos o comunicaciones, dice, tal vez usando ese exótico fenómeno cuántico llamado entrelazamiento de largo alcance, en el que dos partículas muy distantes entre sí pueden influir instantáneamente en los demás estados. Los resultados también podrían influir en la investigación de superconductores de alta temperatura, y en última instancia, podría dar lugar a nuevos avances en ese campo.

“Tenemos que conseguir una comprensión más completa de este asunto. No hay una teoría que describa todo lo que estamos viendo.”

Subir Sachdev, profesor de física en la Universidad de Harvard, que no participó en este trabajo, dice que estos resultados, “son muy importantes y abren un nuevo capítulo en el estudio del entrelazamiento cuántico en muchos cuerpos de sistemas. “La detección de tales estados, eran una” tarea excepcionalmente difícil, y Young Lee y su grupo, han superado con brillantez estos desafíos con su gran experimento.”

Además de Lee y Han, el trabajo fue realizado por J.S. Helton of NIST, research scientist Shaoyan Chu of MIT’s Center for Materials Science and Engineering, MIT chemistry professor Daniel Nocera, Jose Rodriguez-Rivera of NIST and the University of Maryland, and Colin Broholm of Johns Hopkins University. El trabajo fue apoyado por el Departamento de Energía de EE.UU. y la Fundación Nacional de Ciencia.


– Fuente: Massachusetts Institute of Technology
– Imagen: Físicos del MIT hicieron crecer este cristal puro de herbertsmitita en su laboratorio. Esta muestra, que les llevó 10 meses de trabajo, tiene 7 mm. de largo y pesa 0,2 gramos. Imagen: Tianheng Han
.http://bitnavegante.blogspot.com.es/2012/12/descubren-un-nuevo-tipo-de-magnetismo.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+bitnavegante+(BitNavegantes)&utm_term=Google+Reader

El acelerador LHC suspende las operaciones hasta 2015

El acelerador de partículas elementales más grande del mundo, LHC, suspendió las operaciones por 20 meses para un proceso de modernización que le permitirá incrementar su potencia de 8 a 14 teraelectronvoltios.

“Concluidas las operaciones de 2012. Volveremos a vernos por un rato, para las colisiones p-Pb (protones contra núcleos de plomo), en 2013. Las colisiones de alta energía protón-protón se reanudarán en 2015”, señala un mensaje que los responsables del proyecto dejaron en la pantalla online del LHC.

La nota termina con un “Hasta luego, y gracias por el pescado”, la frase que los delfines dicen al abandonar la Tierra antes de su destrucción en la novela “Guía del autoestopista galáctico”, de Douglas Adams.

El LHC, por las siglas en inglés de Gran Colisionador de Hadrones, es un anillo acelerador de 27 kilómetros ubicado en la frontera entre Francia y Suiza y evaluado en más de 6.000 millones de euros. Se puso en marcha en 2008 y, con una que otra pausa técnica, estuvo operativo durante unos tres años generando choques de protones de energía cada vez mayor.

© RIA Novosti.

Gran Colisionador de Hadrones. Infografía

En verano de 2012 cumplió su objetivo fundamental al detectar los rastros de una partícula elemental cuyas características son muy similares a las del llamado bosón de Higgs, o “partícula de Dios”, que supuestamente provee de masa a todo en el Universo. Es el último elemento que faltaba en el modelo estándar de la física de partículas.

http://sp.rian.ru/science_technology_space/20121217/155901994.html

Teleportación: La carrera espacial cuántica

Referencia: Nature.com .
Por Zeeya Merali, 5 de diciembre 2012

Enconados rivales han unido sus fuerzas en la carrera para teletransportar la información cuántica hacia y desde el espacio.

Hace tres años, Jian-Wei Pan trajo un poco de Star Trek a la Gran Muralla de China. Desde un sitio cercano a la base del muro en las colinas, al norte de Beijing, él y su equipo de físicos, de la Universidad de Ciencia y Tecnología de China (USTC) en Hefei, apuntaron un láser a un detector de una azotea a 16 kilómetros de distancia, y luego, utilizando las propiedades cuánticas de los fotones del láser ‘teletransportaron’ la información a través del espacio intermedio (1). En ese momento, se trataba del récord mundial de distancia de la teleportación cuántica, y un paso importante hacia el objetivo final del equipo de teletransportar fotones a un satélite.

Si este objetivo se lograra, se establecerían los primeros eslabones de una ‘Internet cuántica” que aprovecharía el poder de la física subatómica para crear una red super-segura la comunicación global. Se confirmaría el ascenso de China en este campo, desde ser un simple jugador a ser una potencia mundial, en poco más de una década. Para 2016, por delante de Europa y América del Norte, China planea lanzar un satélite dedicado a la experimentación de la ciencia cuántica. Ofrecerá a los físicos una nueva plataforma en la que poner a prueba los fundamentos de la teoría cuántica, y explorar cómo encajan con la teoría general de la relatividad, la tan diferente teoría de Einstein sobre el espacio, el tiempo y la gravedad.

También marcará la culminación de una larga y feroz competencia, aunque amistosa, con Anton Zeilinger, físico de la Universidad de Viena. Zeilinger fue asesor de Jian-Wei Pan, y tras siete años de rivalidad en la  carrera de la teleportación cuántica a larga distancia, es ahora su colaborador. Una vez se lance el satélite, los dos físicos planean crear la primera red segura intercontinental cuántica, que conecte por satélite Asia y Europa. “Hay un viejo proverbio chino, “quien me enseña por un día es mi padre de por la vida”, comenta Jian-Wei Pan. “En la investigación científica, Zeilinger y yo, colaboramos de igual a igual, pero emocionalmente siempre lo consideraré como mi maestro.”

1 Situación del experimento de teleportacion Jian-Wei Pan y Anton Zeilinger

2 Dos fotones “entrelazados” en el laboratorio. Sus polarizaciones individuales aún no se ha definido, el entrelazamiento asegura que cualquier medición hallará que ambas polarizaciones son idénticas, sin importar la distancia entre ellos.

3 Un fotón entrelazado es entonces transmitido desde Beijing a Viena.

4 El fotón que se queda en casa se ​​utiliza para recoger información del otro fotón. El fotón viajero se ve afectado instantáneamente por la comparación en China, y adquiere la información sobre el fotón interrogado.

5 Se comprueban los fotones en China para ver si coinciden. Este proceso destruye la información en poder del fotón interrogado. El test en China también destruye el enlace entre los fotones entrelazados.

6 El resultado del test en China se comunica a través de medios convencionales. Se dice que los experimentadores en Austria si ven su fotón en un estado idéntico al del fotón interrogado se entiende que ha sido ‘teleportado’.

Una carrera meteórica

Jian-Wei Pan tenía sólo  unos treinta años cuando se fundó el primer laboratorio de China para la manipulación de las propiedades cuánticas de los fotones en el año 2001, y en 2003 fue cuando se propuso la misión del satélite. Cumplidos sus 41, en 2011, se convirtió en el más joven investigador admitido en la Academia China de Ciencias. “Él ha ido casi en solitario empujando este proyecto hasta poner a China en el mapa cuántico”, contaba un miembro del equipo, Yu-Ao Chen, también de la USTC.

El impulso de Jian-Wei Pan se remonta a sus años universitarios en la USTC, a finales de 1980, cuando se topó por primera vez con las paradojas en juego del reino atómico. Los objetos cuánticos pueden existir en una superposición de muchos estados: una partícula puede girar tanto en sentido horario como al contrario al mismo tiempo, por ejemplo, y puede simultáneamente estar aquí y allá. Esta personalidad múltiple se describe matemáticamente como la función de onda de una partícula, lo que ofrece la probabilidad de que esté en cada uno de esos estados. Solamente cuando las propiedades de la partícula son medidas colapsa su función de onda, eligiendo un estado definido en una única ubicación. Básicamente, no hay manera, incluso de principio, de poder predecir el resultado de un solo experimento; las probabilidades sólo se mostrarán como una distribución estadística, y únicamente cuando el experimento se repite muchas veces.

Las cosas se vuelven aún más extrañas cuando están involucradas dos o más partículas, gracias a la propiedad cuántica de entrelazamiento. Las partículas múltiples se pueden preparar de tal manera que las mediciones sobre una estén correlacionadas con las mediciones realizadas sobre las otras, aun en el caso que las partículas están separadas por enormes distancias, y a pesar de que el fenómeno de la superposición exige que estas propiedades no pueden ser fijadas hasta el mismo instante en que son probadas. Es tan extraño como que un físico en Beijing y otro en Viena, lanzan una moneda al unísono, y encuentran que siempre sale cara o cruz en ambas a la vez. “Estaba obsesionado con estas paradojas cuánticas”, cuenta Jian-Wei Pan. “Me abstraían tanto que ni siquiera podía estudiar otras cosas”. Quería probar la veracidad de estas afirmaciones casi inconcebibles, pero no podía encontrar un laboratorio experimental adecuado de física cuántica en China.

La progresión natural para los físicos chinos en la posición de Jian-Wei Pan, fue estudiar en los Estados Unidos, de hecho, sus compañeros bromeaban con el acrónimo de la universidad, USTC, diciendo que en realidad significaba ‘Estados Unidos Training Centre’. Pero Jian-Wei Pan quería aprender de un maestro experimental cuántico. Y para él, sólo había un físico que sobresalía, Zeilinger.

En 1989, Zeilinger había colaborado con los físicos Daniel Greenberger, ahora en la Universidad de Nueva York, y Michael Horne, ahora en Stonehill College en Easton, Massachusetts, con un teorema fundamental que rige el entrelazamiento de tres o más partículas (2). El trabajo fue un punto de inflexión para este campo, y para Zeilinger. “En las conferencias, me di cuenta de que los principales físicos más importantes habían empezado a considerarme como un experto en cuántica”, recuerda Zeilinger. A mediados de la década de 1990, Zeilinger ya había establecido su propio laboratorio cuántico en la Universidad de Innsbruck en Austria, y necesitaba un estudiante para probar algunas de sus ideas. Jian-Wei Pan parecía un ajuste perfecto. Así pues, en lo que parecía raro traslado de un estudiante chino, Jian-Wei se trasladó a Austria, iniciando una relación con Zeilinger que vería cómo sus carreras se desarrollaban en paralelo en los dos siguientes decenios.

Aún siendo un estudiante graduado, Jian-Wei tenía grandes ambiciones para su país de origen. En su primera reunión, Zeilinger le preguntó cuál era su sueño. “Construir en China un laboratorio líder en el mundo como el suyo”, dijo Jian-Wei. Zeilinger estaba impresionado. “Cuando vino por primera vez, no sabía nada acerca de cómo trabajar en un laboratorio, pero rápidamente asumió las reglas del juego y no tardó en inventar sus propios experimentos. Siempre supe que tendría una carrera maravillosa; pero el increíble éxito que ha tenido, nadie podría haberlo previsto. Estoy muy orgulloso de él.”

Mientras que Jian-Wei Pan dominaba su oficio en el laboratorio de Zeilinger, los físicos de todo el mundo fueron poco a poco adoptando la idea de que las esotéricas características cuánticas que tanto encantaban a Jian-Wei podrían aprovecharse para crear, por ejemplo, ultra-potentes ordenadores cuánticos. Los ordenadores estándar caminan lentamente a través de la información codificada en dígitos binarios, cadenas de ceros y unos. Pero ya en 1981, el físico Richard Feynman había señalado que los bits cuánticos, llamados “qubits”, no tiene por qué ser un obstáculo. Debido a que un qubit puede existir simultáneamente en superposiciones de 0 y 1, de donde debería ser posible construir ordenadores cuánticos más rápidos, más potentes, que utilizando el entrelazamiento de múltiples qubits realizaran determinados cálculos en paralelo, y a una velocidad impresionante.

Otra idea que fue emergiendo es la del cifrado cuántico ultra-seguro, para aplicaciones tales como las transacciones bancarias. La idea clave es que la medición de un sistema cuántico lo altera irrevocablemente. De tal manera que dos personas, Alice y Bob, podrían generar y compartir una clave cuántica, con la certeza de que cualquier intromisión por un espía, dejaría un rastro inevitable.

Al tiempo que Jian-Wei Pan volviera a China en 2001, el potencial de las tecnologías basadas en la cuántica ya era reconocida lo bastante como para atraer el apoyo financiero de la Academia China de Ciencias y de la Fundación Nacional de Ciencias Naturales de China. “La suerte fue que en 2000 la economía de China comenzó a crecer, así que el momento oportuno para hacer buena ciencia”, dice Jian-Wei. Y él se sumergió en la construcción de su soñado laboratorio.

En Austria, por su parte, Zeilinger se había trasladado a la Universidad de Viena, donde continuó estableciendo récords cuánticos gracias a su afición a pensar a lo grande. Uno de sus más celebrados experimentos demostraban que las buckyballs, moléculas de fullereno que contienen 60 átomos de carbono, pueden exhibir una conducta tanto de onda como de partícula (3), un peculiar efecto cuántico que muchos pensaron que no podría sobrevivir en esas moléculas grandes. “Todo el mundo estuvo hablando de ensayar este experimento con pequeñas moléculas diatómicas”, recuerda Zeilinger. “Y dije, no chicos, no sólo pienso en uno o dos pasos por delante, sino en cómo dar un gran salto inesperado más allá del pensamiento de todos.”

Esa fue una lección que a Jian-Wei Pan le gustó escuchar. Los físicos de todo el mundo estaban empezando a imaginar una futurista Internet cuántica, basada en los vínculos entre ordenadores cuánticos que aún no se había construido. En aquellos momentos, cuando la mayoría de los practicantes se sentían todavía felices de conseguir una información cuántica de seguridad a través de un banco de laboratorio, Jian-Wei ya empezaba a pensar en la forma de un teletransporte por todo el planeta.

Propuesto por primera vez en 1993, por el científico informático Charles Bennett de IBM, y sus colegas, en Nueva York (4), la teleportación cuántica se ganó un nombre sensacional, “parecía algo sacado de Star Trek”, comentaba Chen, ya que permite que toda la información acerca de un objeto cuántico escaneado en un lugar, pueda luego ser recreado en un nuevo lugar. La clave es el entrelazamiento, ya que las operaciones llevadas a cabo en una de las partículas entrelazadas afectan al estado de su pareja, sin importar lo lejos que esté, los dos objetos pueden ser manipulados para que actúen como dos extremos de una línea telefónica de transmisión de la información cuántica entre dos lugares muy distantes entre sí.

El desafío se presenta cuando las partículas entrelazadas, que deben ser producidas juntas, se transmiten a sus respectivos extremos de la conexión telefónica. Este viaje está lleno de ruido, de dispersión de interacciones y todo tipo de otras interrupciones, cualesquiera de ellos puede destruir las delicadas correlaciones cuánticas necesarias para hacer el trabajo de teletransporte. Actualmente, por ejemplo, los fotones entrelazados se transportan a través de fibras ópticas. Sin embargo, las fibras absorben la luz, lo que hace que los fotones no viajen más de unos pocos cientos de kilómetros. Los amplificadores estándar no pueden ayudar, porque el proceso de amplificación destruirá la información cuántica. “Para la teleportación a distancia, más allá del alcance de una ciudad, necesitamos hacerlo a través de un satélite”, reseña Chen.

Pero, ¿podría sobrevivir el entrelazamiento a un viaje a través de la turbulenta atmósfera terrestre hasta un satélite situado unos cientos de kilómetros por encima de nuestras cabezas? Para averiguarlo, el equipo de Jian-Wei Pan, incluyendo a Chen, comenzó en 2005 a llevar a cabo pruebas de viabilidad con base en tierra, a través de cada vez mayores extensiones de cielo despejado, para saber si los fotones perdían su entrelazamiento cuando chocaban contra las moléculas de aire. Aunque también se necesitaba construir un detector diana que debía ser, a su vez, lo suficientemente pequeño como para caber en un satélite y lo bastante sensible como para recoger los fotones teletransportados de un fondo lumínico. Luego tuvieron que demostrar que podían centrar su haz de fotones con la fuerza suficiente para golpear el detector.

El trabajo despertó el instinto competitivo de Zeilinger. “Los chinos estaban en ello, así que pensé ¿por qué no intentarlo?”, Dijo con una sonrisa. “Una especie de competición amistosa siempre es bueno”. La carrera empezó a llevar el récord de distancia más y más lejos (ver el diagrama de abajo ‘registros del duelo’). Durante los siguientes siete años, se llevaron a cabo una serie de experimentos en Hefei, luego en la Gran Muralla de Beijing y, finalmente, en Qinghai, el equipo chino fue capaz de teletransportar a través de distancias cada vez mayores, hasta pasar los 97 kilometros (5). Los investigadores anunciaron sus resultados en mayo, publicando un documento en el servidor de física, arXiv, para gran disgusto del equipo austriaco, cuyos resultados forzaron el teletransporte de fotones entre dos de las Islas Canarias. No obstante, el grupo austriaco publicó en arXiv ocho días más tarde, reportando un nuevo récord de distancia de 143 kilometros (6). Los documentos iban publicándose en rápida sucesión, en Nature (5), (6). “Creo que era el reconocimiento de que cada experimento tenía diferentes y complementarias ventajas”, señaló Xiao-song Ma, físico de la Universidad de Viena y miembro del equipo austriaco.

Línea temporal de registros del duelo

Ambos equipos están de acuerdo en que las preocupaciones científicas acerca del teletransporte a un satélite han sido apaciguadas. Ahora sólo necesitan de un satélite que albergue los tests y una carga funcional para poner a bordo. El equipo de Zeilinger había estado discutiendo una posible misión de satélite cuántico con la Agencia Espacial Europea (ESA), pero las conversaciones perdieron fuerza poco a poco. “Sus mecanismos son tan lentos que no terminaban de tomar una decisión”, decía Zeilinger. La vacilación de la ESA abrió la brecha que necesitaba la Administración Espacial Nacional de China para lanzarse. Jian-Wei Pan ha sido fundamental para sacar adelante la misión, que deberá ver un satélite cuántico lanzado para 2016. Esto coloca a Jian-Wei por delante en la carrera espacial cuántica, y su equipo se encargará de la mayor parte de las pruebas científicas.

La clave para el éxito

Pero no habrá ningún punto de desarrollo de una primera red global de comunicación cuántica si no tengo a nadie con quien hablar. Así que Jian-Wei invitó a su antiguo rival a unirse a él en ese proyecto. Su primera meta conjunta será generar y compartir una clave segura cuántica entre Beijing y Viena. “En última instancia, la teleportación a un satélite es una tarea demasiado grande para que lo pueda hacer un solo grupo”, apunta Ma.

A pesar de que la promesa de avanzar en la frontera tecnológica ha sido el principal atractivo para el gobierno chino, muchos físicos encuentran tentador el proyecto de satélite por otros motivos. “Como científico, lo que me mueve es aprender más sobre el lado fundamental de la física”, razona Chen. Hasta ahora, la rareza de la teoría cuántica ha sido replicada una y otra vez en los laboratorios, pero nunca antes se había probado a través de distancias que se extiendan en el espacio, y no hay razón alguna para pensar que pueda fallar. En las escalas más grandes, domina otra teoría fundamental de la física: la relatividad general. La relatividad describe el tiempo como otra dimensión entretejida con las tres dimensiones del espacio, creando así el tejido cuatridimensional de espacio-tiempo que comprende el Universo. La gravedad se manifiesta porque este maleable tejido se dobla alrededor de los objetos tan masivos como el Sol y tira hacia sí de los objetos menos masivos, como los planetas.

El cuestión es que, la teoría cuántica y la relatividad general presentan concepciones fundamentalmente diferentes del espacio y el tiempo, y los físicos han luchado por fundir ambas teorías en un marco unificador llamado gravedad cuántica. En la imagen de Einstein, el espacio-tiempo es perfectamente liso, incluso cuando se examina a escalas infinitesimales. La incertidumbre cuántica, sin embargo, implica que es imposible examinar el espacio a distancias tan pequeñas. En algún lugar, una u otra teoría, si no ambas, debe ceder el paso, pero no está claro cuál. Los experimentos con satélites podrían ayudar a probar si las reglas de la teoría cuántica podrían aplicarse a escalas más grandes a través de una fuerza de gravedad que no puede ser ignorada.

Una pregunta obvia es si el entrelazamiento puede llevarse a cabo entre la Tierra y un satélite. El equipo tiene previsto responder a ella mediante la producción de una serie de partículas entrelazadas en el satélite, disparando una de cada par hacia laa estación en tierra y medir después sus propiedades para verificar que los pares están correlacionados, contando que el equipo funcione correctamente. “Si no sobrevive el entrelazamiento tendríamos que buscar una teoría alternativa a la mecánica cuántica”, señala Nicolas Brunner, físico teórico en la Universidad de Ginebra, Suiza, que trabaja en los protocolos para el teletransporte al satélite.

El satélite también podría ir un paso más allá, y probar algunas de las predicciones acerca de la estructura del espacio-tiempo realizadas por las teorías candidatas de gravedad cuántica. Por ejemplo, todas estas teorías predicen que el espacio-tiempo se vuelven granuladas si de alguna manera pudieran verse a escalas de 10 a 35 metros, una distancia característica conocida como la longitud de Planck. Si ese es el caso, entonces los fotones que viajan desde el satélite a lo largo de este camino granulado se verían ligeramente frenados (7) y sus polarizaciones experimentarían una pequeña rotación aleatoria (8), son efectos que podrían ser lo bastante grandes como para ser recogidos en la estación de tierra. “El satélite abrirá esa nueva ventana a la realidad en un régimen al que los experimentadores nunca antes habían tenido acceso, y esto suena fantástico”, señala Giovanni Amelino-Camelia, un físico de la Universidad Sapienza de Roma, Italia.

Jian-Wei Pan, Zeilinger y sus equipos, están actualmente examinando las ideas generadas en una reciente serie de talleres en el Instituto Perimeter de Física Teórica en Waterloo, Canadá, donde los físicos les hicieron llegar otras preguntas fundamentales que podrían ser testeadas por el satélite (9). Preguntas del tipo, ¿cómo una partícula entrelazada siempre sabe el resultado de una medición hecha en su distante pareja? ¿La comunicación entre pares se produce por algún canal de información aún desconocido? ¿Qué hace que la función de onda cuántica se derrumbe cuando se mide? ¿Está involucrada la gravedad de alguna manera? Y, ¿es el tiempo una cantidad precisa definida, tal como se describe en la relatividad general, o es vaga tal como se podría esperar de la mecánica cuántica?

Para responder a estas preguntas se requieren aparatos de extraordinaria sensibilidad, dice Jian-Wei Pan. Pero frente a los retos técnicos que plantea, será más fácil ahora que los equipos hayan unido sus fuerzas. El grupo austriaco también está aprovechando la nueva colaboración con entusiasmo. “Uno de mis estudiantes ha empezado a aprender chino”, comenta Zeilinger.


– Fuente: Nature 492, 22-25 (6 de diciembre 2012) doi: 10.1038/492022a
– Imagen 1) Jian-Wei Pan en la Universidad Hefei in China, crédito Stefanie Schramm. Imagen 2) Anton Zeilinger, Universidad de Viena, crédito Jacqueline Godany
– Diagramas: Nature.com


Referencias:
(1) Jin, X.-M. et al. Nature Photon. 4, 376–381 (2010). Artículo .
(2) Greenberger, D., Horne, M. A. & Zeilinger, A. in Bell’s Theorem, Quantum Theory and Conceptions of the Universe (ed. Kafatos, M.) 69–72 (Kluwer, 1989). Artículo .
(3) Arndt, M. et al. Nature 401, 680–682 (1999). Artículo .
(4) Bennett, C. H. et al. Phys. Rev. Lett. 70, 1895–1899 (1993). Artículo .
(5) Yin, J. et al. Nature 488, 185–188 (2012). Artículo .
(6) Ma, X.-S. et al. Nature 489, 269–273 (2012). Artículo .
(7) Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., Nanopoulos, D. V. & Sarkar, S. Nature 393, 763–765 (1998). Artículo .
(8) Contaldi, C. R., Dowker, F. & Philpott, L. Class. Quant. Grav. 27, 172001 (2010). Artículo .
(9) Rideout, D. et al. Class. Quant. Grav. 29, 224011 (2012). Artículo .
.

 http://bitnavegante.blogspot.com.es/2012/12/teleportacion-la-carrera-espacial.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed:+bitnavegante+(BitNavegantes)&utm_term=Google+Reader

Choque de protones causa sorprendentes vuelos de subpartículas

http://www.lagranepoca.com/sites/default/files/imagecache/nodo_fotos/cern_3.jpg

Físicos que estudiaban las colisiones de protonesdescubrieron “un comportamiento sorprendente” en los vuelos de algunas partículas que se crean como productos de los experimentos realizados en el Gran Colisionador de Protones (LHC) que se encuentra en la frontera entre Suiza e Italia.

Ellos observaron que las partículas que vuelan lejos de una colisión pueden compartir información entre sí, como la dirección de la trayectoria del vuelo, aunque no saben cómo, según el reporte del Instituto Tecnológico de Massachussets (MIT) el 27 de noviembre.

“De alguna manera ellos vuelan en la misma dirección aunque no está claro cómo pueden comunicar su dirección con los demás. Esto sorprendió a muchas personas, incluyéndonos”, dijo el profesor de física Roland Gunther, de MIT.

El vuelo de los protones fue algo inesperado, señala Gunther, explicando que es el mismo patrón que observaron en el experimento realizado hace unos dos años.

En su informe la MIT indicó que este mismo patrón, además se observó cuando los iones de metales pesados como plomo y otros como oro y cobre chocaban entre sí.

Gunter analizó los datos de las colisiones junto con Wei Li, un ex investigador posdoctoral del MIT, y que es ahora un profesor asistente en la Universidad de Rice. Juntos estaban recreando el evento de millonésimas de segundo después del Big Bang.

“Estas colisiones de iones pesados producen una onda de plasma del tipo quark gluón, una sopa caliente de partículas cómo las que existían para la primeras pocas millonésimas de segundo después del Big Bang”.

“En el colisionador, esta onda barre algunas de las partículas resultantes, hacia la misma dirección, lo que representa una correlación en sus trayectorias de vuelo”, agregó el físico.

Una de las teorías que analizan los investigadores, es que estas colisiones de protón con protón, debían dar como resultado una onda de líquido de gluones, que se conoce como un condensado de cristal. Los gluones para la física estándar, no tienen masa ni carga eléctrica pero sí una carga de color.

Este fenómeno lo teorizó el científico Raju Venugopalan, del Laboratorio Nacional de Brookhaven, cuando trabajó junto a su ex estudiante Kevin Dusling antes de que se observara este particular vuelo de protones.

Venugopalan comentó que esta condensada formación debía producirse en las colisiones de plomo, los físicos explicaron que los protones en los niveles de energía normales constan de tres quarks, pero a niveles de alta energía tienden a ganar un cúmulo de gluones como acompañamiento. Estos gluones existen como partículas y como ondas, y sus funciones de onda pueden ser correlacionadas entre sí.

“Este ‘entrelazamiento cuántico’, explica cómo las partículas que vuelan lejos de la colisión pueden compartir información, como la dirección de la trayectoria de vuelo”, dice Venugopalan.

“La correlación es un efecto muy pequeño, pero que apunta a algo muy fundamental sobre cómo los quarks y los gluones son dispuestos espacialmente dentro de un protón”, agrega.

Los equipos de estudio de colisiones que trabajan en Europa con el HLC, comenzaron a estudiar las colisiones de plomo para tener los resultados como referencia.

En enero planean hacer nuevos experimentos entre protones de plomo y dejar establecido si realmente las colisiones producen este líquido condensado y trabajar con él

http://www.lagranepoca.com/26340-choque-protones-causa-sorprendentes-vuelos-subparticulas