Del indeterminismo al irracionalismo causal
El nuevo lenguaje de teoría cuántica queda globalmente caracterizado por el principio de indeterminación de Heisenberg: es imposible conocer con exactitud, simultáneamente, la posición y velocidad de una partícula. Tanto más indeterminado es el valor de la posición de un electrón cuanto más precisa es la medida de su velocidad, y viceversa.
En el lenguaje técnico de la física cuántica se dice que posición y momento son magnitudes conjugadas. Al igual que la posición y el momento, magnitud que resulta del producto de la velocidad por la masa de la partícula, son magnitudes conjugadas, existen otros ejemplos físicos como el tiempo y la energía.
Antes de la medida de la posición de un electrón, la interpretación canónica de la teoría cuántica afirma que existe una nube de carga negativa espacialmente distribuida, sin una posición concreta. Posteriormente, una vez realizada la medida cuántica, observamos un sistema físico con posición bien definida (en el instante mismo de la medida), es decir, una partícula puntual: un electrón con una determinada posición. ¿Qué es, pues, el electrón: onda o partícula?
A la vista de los experimentos, Bohr concluyó que el electrón es una onda y una partícula: una ondícula. De acuerdo con su principio de complementariedad, la naturaleza del mundo físico sólo es inteligible en términos de conceptos complementarios que se manifiestan, de un modo (onda- momento) u otro (partícula-posición), según las condiciones experimentales.
La naturaleza ondulatoria de la materia que anticipó de Broglie con el principio de dualidad onda-corpúsculo fue desarrollada con mayor precisión matemática por Schrödinger, quien obtuvo una ecuación diferencial que determinaba la evolución de la onda. La famosa ecuación de Schrödinger es el análogo cuántico para las ondas de las ecuaciones clásicas de Maxwell que describen los fenómenos electromagnéticos.
Los electrones –superada ya la idea atomista clásica de las partículas esféricas macizas– se concebían como ondas de densidad de carga cuya evolución era predicha por la ecuación de Schrödinger. Esta interpretación, factible en sistemas electrónicos confinados (como el átomo), fracasaba cuando las partículas eran libres, pues la onda de carga se desperdigaba rápidamente por todo el espacio.
El esparcimiento espacial de la onda suponía que las partículas no tenían una posición bien definida sino que se asemejaban a una especie de nube electrónica. Desde la perspectiva de la física cuántica, el átomo se concebía como una pobremente definida y ligera nube electrónica alrededor de un diminuto núcleo pesado y positivo, cuya forma dependían de las condiciones físicas del entorno. Esta idea de los electrones no podía comprenderse a la luz de los experimentos con electrones libres que eran casi siempre detectados dentro de una cierta región especial limitada.
Fue Born quien propuso que la función de onda de la ecuación de Schrödinger se interpretara como una densidad de probabilidad; es decir, la probabilidad matemática de encontrar el electrón en una cierta región espacial. El punto de vista de Bohr restringe el alcance de la función de onda como descripción precisa de una sola partícula (electrón) en el régimen cuántico. La interpretación de Born sobre la función de onda, tan acorde con los resultados experimentales donde intervienen muchas partículas, fracasa cuando el sistema físico bajo estudio es una sola partícula.
En este caso, debido a fluctuaciones cuánticas, no es posible determinar, con mayor precisión que la permitida por el principio de Heisenberg, el momento y posición de la partícula individual. En el mejor de los casos es posible restringir una región espacial donde existe la máxima probabilidad de encontrar al electrón después de medir su posición, sin certeza de que tal predicción ocurra finalmente.
La nube electrónica se interpretó en el lenguaje matemático como una nube de probabilidad que, pudiendo localizarse por todo el espacio físico, permanece más o menos confinada en una región espacial donde la función de onda marca probabilidades más altas. Al medir la posición de electrones que tuvieran la misma función de onda, se alcanzaría un patrón de medida cuya distribución espacial coincidiría con la predicha por la función de onda.
La mayoría de las medidas daría una posición del electrón próxima al máximo de la función de onda y sólo tras muchas medidas más se apreciaría una distribución de electrones alejados de dicho máximo. La facilidad de la mecánica cuántica para describir con gran precisión las probabilidades de transición entre distintos estados cuánticos (órbitas estacionarias de un átomo) permitió la consolidación, hasta nuestros días, de la interpretación estocástico-estadística de la teoría cuántica.
En rigor positivista, la actuación del aparato de medida sobre el sistema observado modifica su estado físico previo de tal manera, que la medida cuántica genera un sistema físico distinto al que se pretendía estudiar.
Siguiendo esta epistemología empirista radical, los positivistas llegaron a la conclusión de que no tiene sentido hablar de las propiedades previas de un sistema físico: las nubes electrónicas no tienen propiedades físicas hasta que no les son atribuidas por una determinada observación experimental. La posición o el momento de un electrón no son propiedades internas del ente físico, sino adquiridas momentáneamente en un proceso de medida.
De acuerdo con el lenguaje de la teoría cuántica estándar los estados físicos de los sistemas cuánticos evolucionan unitariamente y deterministamente bajo el rectorado de la ecuación de Schrödinger. Consecuentemente, todo sistema en superposición cuántica no puede transformarse en un estado concreto clásico.
Una vez más, la teoría física no se adecua correctamente a la experimentación, puesto que no se observan sistemas físicos en estados cuánticos superpuestos. La observación es el resultado clásico de la medida de alguna magnitud del sistema. El hecho de medir un sistema cuántico produce la pérdida de coherencia cuántica interna y genera un proceso no unitario e indeterminista que finaliza en la concreción del estado clásico.
Con el principio de complementariedad de Bohr, la epistemología de la física cuántica retoma la propuesta inicial de de Broglie plasmada en su principio de la dualidad onda-corpúsculo. En vez de reconsiderar la nebulosa ontología de los experimentos cuánticos, la ciencia física se consagró a un lenguaje técnico sin cabida para el discernimiento ontológico. Los grandes físicos condujeron a la ciencia del mundo físico hacia una década dorada de relevantes descubrimientos en el campo de las partículas elementales y sus interacciones fundamentales; aunque a un elevado precio: la pérdida de todo sustrato físico donde basar los fenómenos cuánticos.
Fueron los grandes momentos del positivismo físico-matemático donde Bohr y el prestigioso matemático John Von Neumann parecían dar por definitiva la doctrina que reducía la ontología a una triunfante epistemología de predicciones físicas basadas en complejos cálculos matemáticos.
Von Neumann enfatizó la dimensión lógica y coherente del formalismo cuántico hasta construir una estructura matemática, el teorema de von Neumann, que corroboraba el principio de complementariedad de Bohr. En él se afirma que es imposible verificar experimentalmente cualquier teoría causal que prediga de modo determinista el comportamiento de un sistema físico individual.
Con otras palabras, la teoría cuántica de Bohr contiene todo el conocimiento accesible de la naturaleza. La ausencia de trayectorias cuánticas, las incertidumbres en la posición y momento de una partícula cuántica, no son limitaciones propias del desarrollo tecnológico-experimental sino consecuencias físicas manifiestas de la ausencia de leyes sub-cuánticas que determinen la evolución física.
En última instancia, el teorema de von Neumann niega cualquier interpretación causal que explique por qué una partícula se detecta en un determinado lugar. Es decir, no hay explicación posible para la existencia de las fluctuaciones cuánticas observadas experimentalmente en sistemas de partículas individuales. El azar, la arbitrariedad es la ley estocástica fundamental que rige los sistemas cuánticos. Sólo un sistema de muchas partículas, donde se contrarresten dichas fluctuaciones, puede ser descrito con determinación estadística sujeta a caprichosos golpes de suerte en la naturaleza del mundo físico.
A continuación enumeramos las tres primeras afecciones ontológicas consecuentes con el nuevo lenguaje de la física cuántica, de un total de siete que presentamos en este artículo (y en el siguiente, en que concluiremos esta reflexión sobre la mecánica cuántica).
1) Fin del determinismo ontológico
El principio de incertidumbre invalida cualquier referencia a leyes causales que predijeran resultados bien determinados. La incertidumbre en las condiciones iniciales de las partículas supone el fin del determinismo en la ciencia física. No es posible conocer la evolución futura exacta de una partícula sin medir con precisión absoluta su posición y velocidad.
Sin importar cuán sofisticado sea el diseño instrumental de un experimento, la precisión de la medida de dos magnitudes conjugadas (momento-posición, energía-tiempo) no puede ser inferior al límite establecido por Heisenberg: la mitad del cuanto mínimo de acción (h).
La incertidumbre cuántica no es solamente una limitación experimental que impide conocer simultáneamente la posición y la velocidad precisas de una partícula. La física cuántica describe una realidad cuántica donde las magnitudes clásicas como la posición y la velocidad no están bien definidas.
No solamente la partícula clásica pierde sus atributos clásicos. También la misma idea clásica de partícula se desvanece en favor de una existencia cuántica distinta. En consecuencia, el determinismo causal propio del lenguaje de la física clásica se resiente ante un tipo de existencia sin los parámetros clásicos que predicen el comportamiento futuro de una partícula que, cuánticamente, ya no se entiende como una pieza individual de materia.
La física cuántica presenta una realidad cuántica de fondo muy distinta del mundo clásico macroscópico. La materia se presenta en un estado de indefinición cuántica con el potencial de producir la realidad clásica ordinaria.
Esta falta de determinismo ontológico exige una alternativa epistemológica que explique el incontrolable e impredecible resultado de una medida cuántica. De acuerdo con los cánones de la física cuántica, la definición de las propiedades físicas clásicas se produce tras un proceso indeterminista en el régimen cuántico conocido como la transición clásico-cuántica en la medida de un sistema cuántico.
El denominado “problema de la medida cuántica” arroja luz sobre el fondo ontológico de la realidad cuántica. Aún hoy el problema de la medida es controvertido y suscita interesantes debates entre los físicos cuánticos. El planteamiento del problema es cómo explicar la emergencia de la realidad concreta y delimitada del régimen clásico desde un fondo cuántico indefinido. La incertidumbre cuántica hace inviable una explicación causalbottom-up.
No es fácil explicar la determinación del sistema físico clásico desde un fondo cuántico de indeterminación. En el mejor de los casos es posible explicar el problema de la medida cuántica como una anulación de las fluctuaciones cuánticas cuando se observa el sistema cuántico con la interacción de un instrumento de medida clásico.
La compensación de las fluctuaciones es un proceso indeterminado que solo puede ser estudiado clásicamente a partir de leyes estadísticas cuando el número de sucesos es elevado. En este sentido, la indeterminación cuántica se entiende desde la indefinición ontológica de la realidad que se proyecta clásicamente en un conjunto de sucesos individualmente estocásticos cuya regularidad solo admite leyes estadísticas cuando se repite muchas veces.
La consideración absoluta del principio de Heisenberg exige renunciar a la imagen de un mundo físico macroscópico constituido por entidades microscópicas bien definidas en interacción causal. No es posible, pues, mantener por más tiempo la idea griega de un mundo determinista constituido por átomos.
Más bien, la teoría cuántica invita a pensar en una realidad ontológica dinámica e indefinida. Desde nuestra habitual perspectiva clásica, fruto de la experiencia de fenómenos concretos y bien definidos, diríamos que el mundo clásico emerge de un turbulento fondo de indefinición cuántica.
2) Fin del continuismo ontológico
La renuncia de la continuidad del movimiento de una partícula en el régimen cuántico, así como la pérdida de la causalidad clásica en la mecánica cuántica, fueron consideradas por Bohr como las irracionales consecuencias de haber introducido el cuanto elemental de acción física. Podemos decir que la irracional epistemología advertida por Bohr fue el precio que los físicos fundadores de la mecánica cuántica se dispusieron a pagar para poder explicar –con excelente grado de precisión experimental– los novedosos fenómenos físicos que hicieron temblar los cimientos de la física clásica.
Como consecuencia del fin del determinismo ontológico, es lógicamente necesario prescindir del concepto de trayectoria en sentido clásico. El concepto clásico de trayectoria desaparece en el régimen microscópico, pues no es posible definir experimentalmente la geometría lineal continua descrita por la partícula. Conocer la trayectoria exige determinar con absoluta precisión los sucesivos valores de la posición de una partícula.
Si bien la relación matemática del principio de incertidumbre permite conocer sin error la posición de una partícula, la incertidumbre consecuente en su momento se hace infinita y la partícula se dispersa en una región de espacio enorme, impidiendo así, hallar su posición en un instante posterior. En el mejor de los casos, se puede regular la precisión de la posición y velocidad de la partícula y describir una banda geométrica donde con probabilidad se encuentre la partícula.
Desde nuestra perspectiva clásica diríamos que la incertidumbre en la posición y velocidad haría que la partícula fuera saltando cuánticamente de una posición a otra de la banda de probabilidad que sustituye a la trayectoria clásica. Ahora bien, desde la teoría cuántica las consecuencias son aún más sorprendentes, pues ni siquiera podemos decir que haya una partícula clásica definida. Si la analogía con el mundo clásico fuera posible, entonces la partícula describiría una trayectoria discontinua. Pero en la realidad ontológica que se intuye bajo la teoría cuántica no hay una partícula siquiera –al menos en sentido clásico.
La incertidumbre cuántica impide definir tanto la continuidad de la trayectoria como la continuidad de la partícula. La partícula en sentido figurado es un concepto clásico. En sentido cuántico la partícula se diluye en un fluido cuántico desperdigado cuya geometría no asume necesariamente el continuismo clásico, sino que tiene una existencia más modulable como consecuencia de una ontología fluctuante que aún no se ha definido en una realidad clásica concreta.